Rotational Isomerism in 2,2,3,3-Tetranitrobutane

Bee-Geok Tan, Lawrence H.L. Chia, and Hsing-Hua Huang* Chemistry Department, National University of Singapore, Kent Ridge, Singapore 0511

I.r and Raman spectra of 2,2,3,3-tetranitrobutane (in solid and solution states) are reported and assignment of frequencies is made. Comparison of the Raman and i.r. spectra of solid and solution states shows that the compound exists as a mixture of gauche- and trans-rotamers in the solid, with the gauche predominating. Dipole moments in various solvents (benzene, carbon tetrachloride, dioxane, and cyclohexane) at different temperatures, and molar Kerr constants (in carbon tetrachloride and benzene), are also reported. Analysis of the physical data shows that at $25^{\circ} \mathrm{C}, 2,2,3,3$-tetranitrobutane exists as a rotameric mixture of 34% gauche and 66% trans in carbon tetrachloride solution, and 72% gauche and 28% trans in benzene solution. Solvent effects are also discussed.

Our interest in polar and steric effects on rotational isomerism in symmetrically substituted ethanes led us recently to investigate the influence of the nitro group in such molecules. The first paper ${ }^{1}$ in this series showed that 2,3-dinitro-2,3-dimethylbutane exists in the gauche-conformation in the solid state, but as a mixture of 58% trans and 42% gauche rotamers in CCl_{4} solution. We now report our findings on the related molecule 2,2,3,3-tetranitrobutane, based on dielectric, electric birefringence, and i.r. and Raman spectroscopic measurements.

Experimental

Solute.-Our sample of 2,2,3,3-tetranitrobutane, prepared by a method described in the literature, ${ }^{2}$ had m.p. $165-166{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 20.3; H, 2.5; N, 23.8. Calc. for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}$: C, 20.2; H, 2.5; N, 23.5\%).

Solvents.-Solvents were carefully distilled and/or fractionated and dried before use. Their physical constants required in dielectric and Kerr effect measurements have been previously given. ${ }^{3,4}$

Apparatus.-Kerr constants were measured photometrically; ${ }^{5}$ dielectric constants were determined with a heterodyne-beat meter. ${ }^{6}$ Densities and refractive indices were measured by standard procedures. ${ }^{7}$

Solid-state i.r. spectra were recorded for Nujol and hexachlorobutadiene mulls and for KBr disc samples. Solution-state spectra were obtained using solvents such as carbon tetrachloride, carbon disulphide, benzene, chloroform, and acetonitrile. A Perkin-Elmer 682 spectrophotometer was used for all these i.r. measurements. Raman measurements were made by using the 514.5 nm line of a coherent CR-6 argon-ion laser. The spectra were recorded with a Spex 1403 double monochromater in conjunction with a photon-counting system set up in the Physics Department.

Results

The results of all these physical measurements are presented in Tables 1 and 2 , with standard notation.

Fundamental Modes for the Rotamers.-The trans-rotamer of $C_{2 \mathrm{~h}}$ symmetry would have $17 A_{\mathrm{g}}, 14 A_{\mathrm{u}}, 13 B_{\mathrm{g}}$, and $16 B_{\mathrm{u}}$ fundamentals; the gauche-rotamer of C_{2} symmetry would have $31 A$ and $29 B$ fundamentals. Because of masking and overlapping, not all the expected frequencies would necessarily be observed. However, by examining the behaviour of a few
significant bands, it is possible to deduce the type of rotamer(s) present.

Discussion

The assignment of bands for this compound follows that for 2,3-dinitro-2,3-dimethylbutane. ${ }^{1}$ However, the characteristic NO_{2} asymmetric stretching vibrations here are found as a single broad band at $1600 \mathrm{~cm}^{-1}$, higher than those of most aliphatic nitro compounds. Three bands observed in the solid state at 847,860 , and $877 \mathrm{~cm}^{-1}$ (in the region where $\mathrm{C}-\mathrm{N}$ stretching vibrations are expected) appear to persist in benzene and acetonitrile solutions.

In his i.r. study of solid 2,2,3,3-tetranitrobutane, Diallo ${ }^{\text {8 }}$ pointed out that only two i.r.-active bands should be expected for the $\mathrm{C}-\mathrm{N}$ vibrational modes of the trans-rotamer. Since three bands attributable to the $\mathrm{C}-\mathrm{N}$ stretching vibrations instead of two were observed, Diallo ${ }^{8}$ concluded that $2,2,3,3$-tetranitrobutane exists as a mixture of gauche- and trans-conformers in the solid state, the additional band being due to the gaucheconformer. Our i.r. and Raman spectra of the solid and solutions of the compound not only confirm his conclusion but also suggest that the gauche-rotamer is present in higher proportion than the trans in the solid state and in solution in benzene and in polar solvents.

When the i.r. spectra for the solution state are compared with those for the solid state, no extra bands are seen. As an equilibrium mixture of rotamers is expected to exist in solution, it seems from the similarities of the solid- and solution-state spectra that, like the solution state, the solid state also consists of a mixture of gauche- and trans-rotamers. The gaucheconformation should introduce frequencies which are simultaneously active in both Raman and i.r. spectra. One group of frequencies, mutually exclusive in the Raman and i.r., might provide evidence for the existence of the $C_{2 h}$ or trans-form. The second class of frequencies, allowed in both types of spectra, will be due to the other, less symmetric, i.e. gauche-conformer of C_{2} symmetry. We are able to assign some of the observed frequencies to the different gauche- and trans-rotamers by observing the behaviour of these bands in solution.

In the non-polar solvents carbon disulphide and carbon tetrachloride, we expect in general an increase in the intensity of the trans-bands and a corresponding decrease in the intensity of the gauche-bands. However, in a very polar solvent like acetonitrile, the situatic n is reversed and we might expect the gauche-bands to increase in intensity.

Table 1 shows the i.r. and Raman spectra of the compound in the solid state as well as in various polar and non-polar solvents. The spectral listings make for easy comparison of
Table 1. Ir. and Raman spectra of 2,2,3,3-tetranitrobutane in the solid and solution states ${ }^{a}$ (concentrations of solutions are given in weight $\%$)

Table 2. Polarisations, refractions, dipole moments, and molar Kerr constants at infinite dilution of 2,2,3,3-tetranitrobutane. Incremental changes in the relative permittivities, densities, refractive indices, and Kerr constants ($\Delta \varepsilon, \Delta d, \Delta n$, and ΔB, respectively) were measured for solutions having solute weight fractions w_{2}. The coefficients α, β, γ, and δ were derived from the relations $\alpha \varepsilon_{1}=\Sigma \Delta \varepsilon / \Sigma w_{2}, \beta d_{1}=\Sigma \Delta d / \Sigma w_{2}, \gamma n_{1}=\Sigma \Delta n / \Sigma w_{2}$, and $\delta B_{1}=$ $\Sigma \Delta B / \Sigma w_{2}$. When the plots $\Delta \varepsilon$ versus w_{2} showed curvature, as in the case of benzene, CCl_{4}, and dioxane solutions, a regression formula of the type $\Delta \varepsilon=a w_{2}+b w_{2}^{2}$ was used to fit each experimental curve and the coefficients a and b were determined; α was then derived from $\alpha \varepsilon_{1}=a \infty\left(K_{2}\right)$ refers to the solute molar Kerr constant at infinite dilution

Temp. (${ }^{\circ}$)	Solvent	Conen. range $\left(10^{5} w_{2}\right)$	${ }^{\alpha} \varepsilon_{1}$	β	γ	δ	P_{2} / cm^{3}	$R_{\mathrm{D}} / \mathrm{cm}^{3}$	$10^{30} \mu^{a} / \mathrm{Cm}$	$\begin{gathered} 10^{27}{ }_{c}\left(\mathrm{~m} K_{2}\right) / \\ \mathrm{m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1} \end{gathered}$
25	$\mathrm{C}_{6} \mathrm{H}_{6}$	789--5264	6.56	0.454	-0.009	-2.92	338.0	$41.7{ }^{\text {b }}$	12.64 ± 0.03	-109 ± 2
45	$\mathrm{C}_{6} \mathrm{H}_{6}$	586-5 174	5.62	0.454			307.3		12.31 ± 0.03	
60	$\mathrm{C}_{6} \mathrm{H}_{6}$	995-8331	5.02	0.461			286.7		12.11 ± 0.03	
5	CCl_{4}	435-1241	6.17	-0.053			196.0		8.74 ± 0.03	
25	CCl_{4}	730-1653	5.81	-0.042	0.010	30.24	192.1	43.9	8.91 ± 0.07	68 ± 6
45	CCl_{4}	508-1861	5.62	-0.026			192.8		9.24 ± 0.03	
25	$\mathrm{C}_{6} \mathrm{H}_{12}$	763--1331	2.20	0.478			166.4	43.2	8.11 ± 0.10	
25	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	709-5994	10.12	0.345			439.4	43.3	14.65 ± 0.03	
alculat	on the ba	hat ${ }_{\mathrm{D}} P=1.05$	$\cdot{ }^{b} R_{\mathrm{D}}$	c.) $=43$						

relative band intensities. For instance, of the two bands at 532 and $507 \mathrm{~cm}^{-1}$ in the solid state the band at $532 \mathrm{~cm}^{-1}$ is of greater intensity. In the non-polar solvents carbon disulphide and carbon tetrachloride, this band decreases in intensity, while the $507 \mathrm{~cm}^{-1}$ band remains approximately constant in intensity. In the polar acetonitrile solvent, the $532 \mathrm{~cm}^{-1}$ band increases in intensity, becoming more intense than the $507 \mathrm{~cm}^{-1}$ band. These facts suggest that the $532 \mathrm{~cm}^{-1}$ band can be assigned to the gauche-rotamer. Although the intensity of the $532 \mathrm{~cm}^{-1}$ band is given as (4) in carbon tetrachloride (appearing at $525 \mathrm{~cm}^{-1}$) and as (6) in benzene (appearing at $526 \mathrm{~cm}^{-1}$), the proportion of the gauche-rotamer in benzene compared with that in carbon tetrachloride could be considerably greater than that suggested by the ratio $4: 6$ if we allow for the fact that the intensities of common bands (e.g. at 1125 and $850 \mathrm{~cm}^{-1}$) in the two solvents are generally greater in carbon tetrachloride. Since the concentrations of solutes in different solvents have not been adjusted precisely to the same value, estimates of gauche:trans ratios from the intensities of any band in different solvents would not be as reliable as such estimates from dielectric data.

Another band of interest in the solid state is at $799 \mathrm{~cm}^{-1}$, where it appears as a strong shoulder to the band at $788 \mathrm{~cm}^{-1}$. In carbon disulphide it increases markedly in intensity, thus suggesting that it should be assigned to the trans-rotamer, which in a non-polar solvent would be expected to increase in proportion. This assignment is confirmed by the marked decrease of this band in the polar solvent acetonitrile, where the band is almost not observable.
Similarly, bands at $1215,1157,925,877,860,778$, and 707 cm^{-1} have been found to decrease in intensity in carbon disulphide and carbon tetrachloride but to increase in intensity in acetonitrile. These may therefore be assigned to the gaucherotamer. On the other hand, the band at $1068 \mathrm{~cm}^{-1}$ has been assigned to the trans-rotamer. From the relatively weak intensity of this band and the other trans-band at $799 \mathrm{~cm}^{-1}$ mentioned earlier, we can conclude that in the solid state the proportion of gauche-rotamer present is greater than that of the trans-form.

A comparison of the i.r. and Raman spectra of the solid shows that the gauche-frequencies in the i.r. spectra at 1215,1157 , ca. $930,877,860,778,707$, and $532 \mathrm{~cm}^{-1}$ are also present in the Raman spectrum except for that at $1215 \mathrm{~cm}^{-1}$. This might be because this frequency is of too low an intensity to be observed. Typical trans-bands like those at 1068 and $799 \mathrm{~cm}^{-1}$ do not have their counterparts in the Raman spectrum.

Thus from the pattern of the i.r. bands in solution compared with those in the solid state, we are able to infer the presence of
both gauche- and trans-rotamers in the solid and solution states. The co-existence of these rotamers in the solid state has been confirmed by the fact that the identified gauche-bands can be found at the same frequencies in both Raman and i.r. spectra of the solid while the identified trans-frequencies are mutually exclusive in both Raman and i.r. spectra.

Our discussion so far has been based on the i.r. and Raman frequencies in the region $1250-400 \mathrm{~cm}^{-1}$. The region of higher frequencies has not been discussed because the CH_{3} stretching, NO_{2} stretching, and CH_{3} deformation vibrations that occur in this region are usually not sensitive to conformational changes.

Comparison with Analogues.-We have compared our work on this compound with two very similar studies on the bromoand chloro-analogues. ${ }^{9,10}$ Solid 2,2,3,3-tetrabromobutane shows polymorphism, occurring in tetragonal and two orthorhombic forms. All the i.r. and Raman bands observed in the orthorhombic forms have also been observed in the tetragonal form, demonstrating their spectroscopic similarities. From a study of the $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{C}$ stretching frequencies, it was concluded that, in the crystalline state, only the $C_{2 h}$ conformer is present.

The i.r. spectra of 2,2,3,3-tetrachlorobutane were obtained over the temperature range +180 to $-170^{\circ} \mathrm{C}$. No simplification of the spectra was observed as the temperature was lowered. Comparison with the Raman spectra of the solid showed that two categories of frequencies were present. Frequencies in one group were simultaneously present in the Raman and i.r. spectra and were assigned to the gaucherotamer. Frequencies in a second group were mutually exclusive in the two types of spectra and were assigned to the transrotamer. It was thus concluded that the tetrachloro-compound exists as a mixture of rotamers in the solid state. This is very similar to the behaviour of 2,2,3,3-tetranitrobutane.

It is interesting to compare 2,3-dinitro-2,3-dimethylbutane with 2,2,3,3-tetranitrobutane, and 2,3-dichloro-2,3-dimethylbutane with 2,2,3,3-tetrachlorobutane from the point of view of the relative stabilities of the trans- and gauche-conformers in the solid state. 2,3-Dinitro-2,3-dimethylbutane exists in the gaucheconformation in the solid state. With the introduction of two bulky nitro groups in place of two methyl groups to give 2,2,3,3tetranitrobutane, the gauche-rotamer becomes less stable with respect to its trans-counterpart. Thus in the solid state, instead of existing in the gauche-form only, 2,2,3,3-tetranitrobutane exists as a mixture of rotamers, but with the gauche-rotamer still predominating. In contrast, 2,3-dichloro-2,3-dimethylbutane exists as a mixture of trans- and gauche-forms in the high-

Table 3. Thermodynamic quantities governing gauche/trans equilibrium (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for $2,2,3,3$-tetranitrobutane ${ }^{a}$

	Temp.		ΔG°	ΔH°	ΔE	$\Delta H^{\circ}-\Delta E$
Solvent	$\left({ }^{\circ} \mathrm{C}\right)$	$K=N_{g} / N_{t}$	$\Delta .69$			
CCl_{4}	5	0.52	1.62	3.1 ± 0.9	3.35 ± 0.4	-0.3 ± 0.9
	25	0.58	$(0.68)^{b}$	(3.8 ± 0.7)	(2.52 ± 0.1)	(1.3 ± 0.7)
		2.60	-2.37			
Benzene	45		(-3.39)			
	25		-2.05	-6.5 ± 0.2	-0.64 ± 0.4	-5.8 ± 0.5
			(-3.65)	(-2.7 ± 0.6)	(-1.67 ± 0.1)	(-1.0 ± 0.6)

${ }^{a} \Delta G^{\circ}$ is calculated from the relation $\Delta G^{\circ}=-R T \ln K ; \Delta H^{\circ}$ is obtained from the slope of the $\ln K$ versus $1 / T$ plot by the method of least squares and assuming ΔH° to be constant over the temperature range. ${ }^{b}$ Numbers in parentheses refer to corresponding values for 2,3-dinitro-2,3-dimethylbutane.
temperature solid phase with the trans-form having lower energy than the gauche. ${ }^{11}$ When two methyl groups are replaced by two chloro groups to give 2,2,3,3-tetrachlorobutane, both rotamers are approximately of equal energy.

Dipole Moment and Kerr Effect Measurements.-Results of the polarisation measurements in benzene, carbon tetrachloride, cyclohexane, and dioxane at various temperatures are summarised in Table 2. Kerr effect measurements in benzene and carbon tetrachloride are also included.

The dipole moment increases with increasing temperature in carbon tetrachloride. This shows that ΔE_{s} is positive and that the trans-rotamer is more stable than the gauche in this solvent. By the Lennard-Jones-Pike method, ${ }^{12} \Delta E_{\mathrm{s}}$ is evaluated as $3.35 \pm 0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, with the dipole moment of the gaucherotamer (μ_{g}) equal to $15.25 \times 10^{-30} \mathrm{Cm}$ and the torsion angle 83°. These values correspond to a gauche-rotamer population of 34% in carbon tetrachloride. Our spectroscopic results, which show that in a non-polar solvent the trans-rotamer predominates over the gauche, are in broad agreement with this value. The larger ΔE_{s} value of 2,2,3,3-tetranitrobutane (3.35 kJ mol^{-1}) compared with that of 2,3-dinitro-2,3-dimethylbutane ($2.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$) shows that replacement of two methyl groups by two nitro groups has made the gauche-rotamer of the tetranitro compound less stable than that of the dinitro compound in carbon tetrachloride solution, probably because of greater steric and repulsive interactions.

Like 2,3-dinitro-2,3-dimethylbutane, ${ }^{1}$ the dipole moment of 2,2,3,3-tetranitrobutane in benzene decreases with increasing temperature. This indicates once again that ΔE_{s} is negative and that in benzene the gauche-rotamer is now the more stable rotamer. Calculations show that ΔE_{s} has a value of $-0.64 \pm$ $0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with μ_{g} equal to $14.88 \times 10^{-30} \mathrm{Cm}$ and the torsion angle 86°. The gauche-rotamer population corresponding to these values is then calculated to be 72%. This value for the torsion angle agrees quite well with that found when carbon tetrachloride is the solvent. This suggests that the interaction between 2,2,3,3-tetranitrobutane and the benzene solvent molecules does not affect the molecular parameters of the solute molecules. The augmentation in dipole moment of the compound in benzene relative to carbon tetrachloride may thus be attributed to an increase in gauche-content only.

As in 2,3-dinitro-2,3-dimethylbutane, ${ }^{1}$ differences in dipole moments are observed when the solvent is changed. The dipole moment in cyclohexane ($8.11 \pm 0.10 \times 10^{-30} \mathrm{Cm}$) is somewhat smaller than that in carbon tetrachloride at $25^{\circ} \mathrm{C}(8.91 \pm 0.07$ $\times 10^{-30} \mathrm{Cm}$). This is probably due to the smaller dielectric constant of cyclohexane (2.020), which produces a smaller 'reaction field ${ }^{13}$ at the solute molecule. It is interesting that in
carbon tetrachloride (as well as benzene and dioxane), the plot of dielectric constant of the solutions against solute concentration shows curvature. This indicates that there is a nonlinear self-enhancing effect here in that as the concentration increases, thus increasing the dielectric constant of the surrounding medium, the polar gauche-rotamer becomes progressively more stabilised by its own reaction field, resulting in a progressively increasing shift in the gauche/trans equilibrium in favour of the gauche-rotamer. In cyclohexane, however, this is not observed and only a straight-line plot is obtained.

In benzene, there is a large augmentation in the dipole moment with respect to carbon tetrachloride at $25^{\circ} \mathrm{C}(3.73 \times$ $10^{-30} \mathrm{Cm}$). In this case, since the dielectric constants of carbon tetrachloride and benzene are similar in value (2.227 and 2.273, respectively) the reaction field effect will be similar. It seems more likely that the augmentation is due to π-complex formation between the solute and benzene solvent molecules. In agreement with this, the molar Kerr constant value (${ }_{m} K$) in benzene ($-109 \pm 2 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}$) is significantly different from that in carbon tetrachloride $\left(68 \pm 6 \times 10^{-27} \mathrm{~m}^{5}\right.$ $\mathrm{V}^{-2} \mathrm{~mol}^{-1}$) with $\Delta_{\mathrm{m}} K$ equal to $-177 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}$. The dipole moment of the compound in dioxane at $25^{\circ} \mathrm{C}$ is 14.65 $\pm 0.03 \times 10^{-30} \mathrm{Cm}$. This gives an augmentation of $5.74 \times$ $10^{-30} \mathrm{Cm}$ with respect to carbon tetrachloride, far greater than a similar effect of $3.90 \times 10^{-30} \mathrm{Cm}$ in 2,3-dinitro-2,3-dimethylbutane. We have postulated that interaction between 2,3-dinitro-2,3-dimethylbutane and dioxane occurs through the 'acidic' hydrogen atoms of the compound with the electron-rich oxygen atoms of dioxane. A similar situation is expected to hold for 2,2,3,3-tetranitrobutane. In fact an n.m.r. study ${ }^{14}$ has shown that the hydrogen atoms of the tetranitro compound are more 'acidic' than those of the dinitro compound. We should therefore expect stronger interaction between the solvent dioxane molecules and the solute, thus giving rise to a greater augmentation in dipole moment than in the dinitro compound.

It is worth mentioning here too that the augmentation of the dipole moment of the tetranitro compound in dioxane is greater than in benzene. This is again not surprising as dioxane is a better proton-acceptor solvent than benzene.

Table 3 gives free energy and enthalpy values for the trans/ gauche equilibrium for 2,2,3,3-tetranitrobutane as well as some corresponding values for 2,3-dinitro-2,3-dimethylbutane (shown in parentheses for comparison). In carbon tetrachloride, the difference between ΔH° and ΔE for 2,2,3,3-tetranitrobutane is small $\left[\Delta H^{\circ}=\Delta E_{\mathrm{s}}+\Delta(P V)\right]$ though the experimental errors are such that it is difficult to say whether this difference is positive or negative. However, since the difference is small in absolute terms, we may conclude that there is little change in volume when the more stable trans-molecules are converted
into the gauche (the pressure remaining constant). This suggests that the degrees of interaction between the transrotamers and the solvent and between the gauche-rotamers and the solvent are comparable. By contrast, the difference between ΔH° and ΔE in benzene solution is clearly negative, implying a decrease in volume of the system when trans-molecules are converted into the more stable gauche. This decrease in volume is consistent with our earlier suggestion that the gauchemolecules attract the solute benzene molecules to form π complexes more effectively than the trans. The fact that the $\Delta H^{\circ}-\Delta E$ for $2,2,3,3$-tetranitrobutane (-5.8) is much more negative than the corresponding value for 2,3 -dinitro-2,3dimethylbutane (-1.0) suggests that π-complex formation takes place more effectively in the former compound.

References

1 Bee-Geok Tan, L. H. L. Chia, Hsing-Hua Huang, Meng-Hau Kuok, and Sing-Hai Tang, J. Chem. Soc., Perkin Trans. 2, 1984, 1407.

2 C. E. Gabriel, D. E. Bisgrove, and L. B. Clapp, J. Am. Chem. Soc., 1955, 77, 1293.
3 L. H. L. Chia, H. H. Huang, and P. K. K. Lim, J. Chem. Soc. B, 1969, 608.

4 K. E. Calderbank, R. J. W. Le Fevre, and G. L. D. Ritchie, J. Chem. Soc. B, 1968, 503.
5 H. H. Huang and S. C. Ng, J. Chem. Soc. B, 1968, 582.
6 H. H. Huang and E. P. A. Sullivan, Aust. J. Chem., 1968, 21, 1721.
7 R. J. W. Le Fevre, (a) 'Dipole Moments,' Methuen, London, 1953, 3rd edn., ch. 2; (b) Adv. Phys. Org. Chem., 1965, 3, 1.
8 A. O. Diallo, Spectrochim. Acta, Part A, 1974, 30, 1505.
9 A. O. Diallo, Spectrochim. Acta, Part A, 1976, 32, 295.
10 A. O. Diallo, Spectrochim. Acta, Part A, 1979, 35, 597.
11 T. Koide, T. Oda, K. Ezumi, K. Iwatani, and T. Kubota, Bull. Chem. Soc. Jpn., 1968, 41, 307.
12 J. E. Lennard-Jones and H. H. M. Pike, Trans. Faraday Soc., 1934, 30, 830.

13 L. Onsager, J. Am. Chem. Soc., 1936, 58, 1486.
14 B. G. Tan, Ph.D. Thesis, National University of Singapore, 1984.

